Vibrational Spectra and Normal Coordinate Calculations for Trimethylgermane

Yoshika Imai* and Koyo Aida

Department of Engineering Science (Chemistry), Faculty of Engineering, Tohoku University, Sendai 980 (Received May 18, 1981)

Vibrational spectra of $(CH_3)_3GeH$, $(CH_3)_3GeD$, $(CD_3)_3GeH$, and $(CD_3)_3GeD$ were obtained. Assignments for all the fundamentals except internal torsions were made by assuming the C_{3v} molecular symmetry. Normal coordinate calculations were carried out to confirm the assignments.

In our previous paper,1) we reported on a study of vibrational spectra and normal coordinate calculations for trimethylsilane. The study has now been extended to trimethylgermane. Although numerous vibrational studies on trimethylsilane have been reported,2) only a limited number have been reported on trimethylgermane³⁻⁶⁾ and most of them relate to substituent effects on the GeH stretching mode. As far as we know, study on the assignment of all the active fundamentals has been made only by Van de Vondel and Van der Kelen.⁶⁾ They made also normal coordinate calculations with no data of isotopic compounds available by assuming the methyl group as a point mass. In the paper¹⁾ on trimethylsilane, it was pointed out that the methyl rock, the SiH bend, and the asymmetric SiC₃ stretch are fairly strongly coupled with one another. Since it may highly be expected that a similar vibrational coupling will be operative also in the case of trimethylgermane, it seems inadequate to make the calculation by assuming that the methyl group is a point mass. In this paper, we will report vibrational spectra of trimethylgermane and its deuterated analogues and results of normal coordinate calculations on these compounds carried out without assuming the methyl group as a point mass.

Experimental

 $(CH_3)_3GeH$ and $(CH_3)_3GeD$ were prepared by reduction of $(CH_3)_3GeI$ with LiAlH₄ and LiAlD₄, respectively. $(CH_3)_3GeI$ was prepared through a reaction of tetramethylgermane with I_2 in a sealed tube at 50 °C. The crude trimethylgermane was purified by vacuum distillation with a conventional vacuum line. $(CD_3)_3GeH$ and $(CD_3)_3GeD$ were prepared similarly to $(CH_3)_3GeH$ and $(CH_3)_3GeD$, respectively, by using $(CD_3)_4Ge$ instead of $(CH_3)_4Ge$. The purity of the compounds was checked by their infrared spectra in the gas phase.

Infrared spectra (4000—300 cm⁻¹) and far-infrared spectra (400—80 cm⁻¹) were recorded on a Hitachi 345 spectrophotometer and on a Hitachi FIS-III spectrophotometer, respectively, in the gas phase and with solid films at liquid nitrogen temperature.

Raman spectra were recorded with liquids in capillary tubes on a JEOL JRS-S1 Raman spectrophotometer equipped with a 50 mW NEC GLG 5800 He-Ne laser.

Results and Vibrational Assignments

If each methyl group in a molecule is staggered to both the Ge-H bond and the adjacent Ge-C bonds,

the molecule will have a C_{3v} symmetry. On this assumption the 36 normal vibrations are made distributed as $8A_1 + 4A_2 + 12E$. The A_1 and E modes are active in infrared and Raman spectra but the A_2 modes inactive in both.

Symmetry coordinates have been classified, according to the description of the modes of methyl group and of the skeletons in the molecules, as given in Table 1, where the numbering of the symmetry coordinates is the same as that for the corresponding coordinates for trimethylsilane.¹⁾ Figures 1 and 2 show the infrared spectra in the gas phase and the Raman spectra in the liquid phase, respectively. Tables 2—5 list the observed fundamental frequencies.

By taking into consideration the isotopic shift and polarization of Raman bands as well as data for related compounds,^{7–9)} assignments for the methyl stretches and the GeH and GeD stretches may easily be made.

There should be five methyl deformations. Asymmetric deformations bonded to a metal atom are usually relatively weak and broad, and their positions in spectra do not markedly shift with change in the nature of the metal atom, whereas symmetric methyl deformations usually give relatively strong and sharp bands and exhibit slight shifts with change in the nature of the metal atom.¹⁰⁾ For (CH₃)₃GeH and (CH₃)₃GeD the asymmetric deformations are observed at *ca.* 1410 cm⁻¹. Upon deuteration of the methyl groups, these shift to *ca.* 1040 cm⁻¹. The symmetric deformations are observed at *ca.* 1250 cm⁻¹ for (CH₃)₃GeH and (CH₃)₃GeD and at *ca.* 970 cm⁻¹ for (CD₃)₃GeH and (CD₃)₃GeD.

Three methyl rocks, two GeC₃ stretches, and a GeH or GeD bend are expected to appear in the

Table 1. Description of the symmetry coordinates for trimethylgermane^{a)}

Vibrational mode	Coordinate			
vibrational mode	A_1	$\overline{\mathrm{A_2}}$	E	
Stretching (CH ₃) _a or (CD ₃) _a	S_1	S_9	S ₁₃ , S ₁₄	
Stretching (CH ₃) _s or (CD ₃) _s	S_2		S_{15}	
Stretching (GeH) or (GeD)	S_3			
Deformation (CH ₃) _a or (CD ₃) _a	S_4	S_{10}	S_{16}, S_{17}	
Deformation (CH ₃) _s or (CD ₃) _s	S_5		S_{18}	
Rocking (CH ₃) or (CD ₃)	S_6	S_{11}	S_{19}, S_{20}	
Bending (GeH) or (GeD)			S_{21}	
Stretching (GeC ₃)	S_7		S_{22}	
Deformation (GeC ₃)	S_8		S_{23}	
Torsion		S_{12}	S_{24}	

a) Abbreviations used: a, asymmetric; s, symmetric.

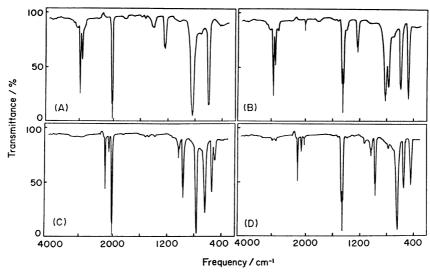


Fig. 1. Infrared spectra of $(CH_3)_3GeH$ (A), $(CH_3)_3GeD$ (B), $(CD_3)_3GeH$ (C), and $(CD_3)_3GeD$ (D) in the gas phase.

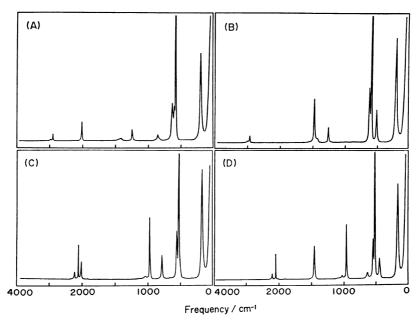


Fig. 2. Raman spectra of $(CH_3)_3GeH$ (A), $(CH_3)_3GeD$ (B), $(CD_3)_3GeH$ (C), and $(CD_3)_3GeD$ (D) in the liquid.

range 900-400 cm⁻¹. Of these vibrations the A₁ GeC₃ stretching mode should give an intense polarized Raman band. Therefore, the Raman bands at ca. 550 cm⁻¹ for (CH₃)₃GeH and (CH₃)₃GeD may undoubtedly be assigned to this mode. Upon deuteration of methyl groups these shift to 520 cm⁻¹. A₁ methyl rocking frequencies are expected to be approximately identical with each other for (CH₃)₃GeH and (CH₃)₃GeD and for (CD₃)₃GeH and (CD₃)₃GeD, since it is also the case with trimethylsilane (850 cm⁻¹ for $(CH_3)_3SiH$ and 847 cm⁻¹ for $(CH_3)_3SiD$; 704 cm⁻¹ for $(CD_3)_3SiH$ and 705 cm^{-1} for $(CD_3)_3SiD).^{1)}$ On this basis, to this mode we have assigned the Raman bands at 830 cm^{-1} for $(CH_3)_3GeH$ and $(CH_3)_3GeD$ and at $ca. 650 \text{ cm}^{-1}$ for $(CD_3)_3GeH$ and $(CD_3)_3GeD$. However, these Raman bands are only partly polarized. This suggests that there are some other vibrations in the E class coinciding on these bands. The most probable candidate is the E methyl rock, since the same accidental degeneracy is found in the A₁ and E methyl rocks in $(CH_3)_3GeCl,^7$ $(CH_3)_3GeCF_3,^9$ and $(CH_3)_3GeGeH_3,^{11}$

The remaining bands observed in the range 900—400 cm⁻¹ may be considered to be the vibrations due to the E modes but it is not easy to assign these bands. However, the 480 cm⁻¹ band in (CH₃)₃GeD and the 780 cm⁻¹ one in (CD₃)₃GeH are probably due to the GeD and GeH bends, respectively, since no corresponding Raman bands are observed for (CH₃)₃GeH or (CD₃)₃GeD in the same region. Assignment of the other bands is impossible without the aid of normal coordinate calculations.

The two GeC_3 deformation modes (A₁ and E) should be expected in the region below 300 cm⁻¹,

Table 2. Observed and calculated frequencies $(cm^{-1}) \ \ \text{for} \ \ (CH_3)_3 GeH$

Table 4. Observed and calculated frequencies (cm^{-1}) for $(CD_3)_3GeH$

No.	Infrared gas	Raman liquid	Calcd	PED
1	2982	2982	2986	100S ₁
2	2922	2913	2914	$99S_2$
3	2040	2036	2041	$100S_{3}$
4	1426	1419	1425	97S ₄
5	1246	1247	1250	$85S_5$, $10S_2$
6	833	830	830	$95S_6$
7	571*	573	578	98S ₇
8	187	189	188	$77S_{8}, 23S_{6}$
13	2982	2982	2987	77S ₁₃ , 23S ₁₄
14	2982	2982	2986	$77S_{14}, 23S_{13}$
15	2922	2913	2914	$99S_{15}$
16	1426	1419	1425	$90S_{16}$
17	1426	1419	1425	88S ₁₇
18	1246	1247	1251	86S ₁₈ , 10S ₁₅
19	624*	626	627	$44S_{19}$, $43S_{21}$, $12S_{22}$
20	833	830	834	$89S_{20}$
21	850*	850	852	45S ₂₁ , 43S ₁₉
22	592	597	604	$79S_{22}$, $12S_{21}$
23	187	189	188	$99S_{23}$

No.	Infrared gas	Raman liquid	Calcd	PED
1	2236	2232	2227	99S ₁
2	2129	2123	2121	$97S_2$
3	2041	2032	2041	$100S_{3}$
4	1043	1038	1030	$98S_{4}$
5	976	969	966	75S ₅ , 13S ₂ , 12S ₇
6	654	650	649	$90S_6$
7	520*	520	515	88S ₇
8	160	163	163	$73S_{8}, 27S_{6}$
13	2236	2232	2225	$52S_{13}, 47S_{14}$
14	2236	2232	2226	52S ₁₄ , 47S ₁₃
15	2129	2123	2121	$97S_{15}$
16	1043	1038	1031	83S ₁₆ , 15S ₁₇
17	1043	1038	1029	82S ₁₇ , 15S ₁₆
18	976	969	965	$75S_{18}, 13S_{15}$
19	511	500	505	$76S_{19}, 23S_{21}$
20	654	650	633	$90S_{20}$
21	787	780	780	$89S_{21}$, $10S_{19}$
22	552	553	548	$86S_{22}$
23	160	163	166	$97S_{23}$

^{*} The frequency is taken from the solid state spectrum.

* See the footnote in Table 2.

Table 3. Observed and calculated frequencies $(cm^{-1}) \ \ \text{for} \ \ (CH_3)_3 GeD$

No.	Infrared gas	Raman liquid	Calcd	PED
1	2982	2982	2986	100S ₁
2	2920	2913	2914	$99S_2$
3	1470	1467	1454	$100S_{3}$
4	1410	1420	1425	97S ₄
5	1248	1249	1250	$85S_{5}$, $10S_{2}$
6	833	830	829	95S ₆
7	570*	574	578	98S ₇
8	187	190	187	77S ₈ , 23S ₆
13	2982	2982	2987	76S ₁₃ , 24S ₁₄
14	2982	2982	2987	76S ₁₄ , 24S ₁₃
15	2920	2913	2914	$99S_{15}$
16	1410	1420	1424	$91S_{16}$
17	1410	1420	1425	89S ₁₇
18	1248	1249	1251	$86S_{18}$, $10S_{15}$
19	787	785	783	$85S_{19}, 10S_{21}$
20	833	830	836	$94S_{20}$
21	490	490	486	$78S_{21}, 20S_{19}$
22	603	606	610	$94S_{22}$
23	187	190	188	99S ₂₃

^{*} See the footnote in Table 2.

However, only one band is observed in the infrared and Raman spectra for each isotopic compound below 300 cm⁻¹. It may be considered that these two vibrations coincide with each other in the present compounds, since in (CH₃)₃GeCl the A₁ and E GeC₃ deformation modes are observed in the Raman spectra as two closely positioned bands at 193 and 185 cm⁻¹.7)

Table 5. Observed and calculated frequencies $(cm^{-1}) \ \ for \ \ (CD_3)_3 GeD$

No.	Infrared gas	Raman liquid	Calcd	PED
1	2235	2232	2227	99S ₁
2	2128	2122	2121	$97S_2$
3	1468	1463	1454	100S ₃
4	1038	1037	1030	98S ₄
5	976	969	966	75S ₅ , 13S ₂ , 12S ₇
6	649	646	649	90S ₆
7	520*	520	514	88S ₇
8	161	163	163	73S ₈ , 27S ₆
13	2235	2232	2225	56S ₁₃ , 43S ₁₄
14	2235	2232	2226	$56S_{14}, 43S_{13}$
15	2128	2122	2121	$97S_{15}$
16	1038	1037	1031	82S ₁₆ , 16S ₁₇
17	1038	1037	1029	81S ₁₇ , 16S ₁₆
18	976	969	965	$75S_{18}, 13S_{15}$
19	649	646	646	27S ₁₉ , 34S ₂₀ , 27S ₂₁
20	635*	646	626	$65S_{20}$, $20S_{21}$, $12S_{21}$
21	447	448	444	55S ₂₁ , 44S ₁₉
22	550	551	546	81S ₂₂
23	161	163	166	$97S_{23}$

^{*} See the footnote in Table 2.

Normal Coordinate Calculations and Discussion

Normal coordinate calculations were carried out by Wilson's GF-matrix method on an ACOS 77/900 computer at the Computer Center, Tohoku University, the iterative least-squares procedure being used in the usual way. The G matrix was calculated by use of the molecular parameters determined from microwave study¹²⁾ $(r(\text{Ge-H})=0.1532 \text{ nm}, r(\text{Ge-C})=0.1947 \text{ nm}, r(\text{C-H})=0.1905 \text{ nm}, \angle \text{C-Ge-C}=109.6^{\circ})$ and by assuming a tetrahedral angle around carbon atoms. In the calculations the observed frequencies were weighted by $(1/\lambda)$. The torsional mode was neglected in the E class.

A least-squares refinement was carried out in terms of symmetry force constants which had been fitted simultaneously to the observed frequencies for the four isotopic species. This refinement was carried out in the same manner as with the acetonitrile-borane adduct¹³⁾ and trimethylsilane.¹⁾ The calculated frequencies have an average error of 0.39% for A_1 vibrations and 0.59% for E vibrations. The sum of the weighted squares of errors $\Sigma(\lambda_{\rm obsd}-\lambda_{\rm caled})^2/\lambda_{\rm obsd}$ was 1.7×10^{-3} for A_1 vibrations and 3.2×10^{-3} for E vibrations. The symmetry force constants, together with the uncertainty ranges from the last cycle in the least-squares refinement, are given in Table 6.

Table 6. Symmetry force constants for trimethylgermane^a)

	Constant	σ		Constant	σ
F ₁	4.739	0.011	F ₁₃	4.754	0.014
$\mathbf{F_2}$	4.715	0.055	$\mathbf{F_{14}}$	4.743	0.014
$\mathbf{F_{3}}$	2.439	0.008	F_{15}	4.718	0.062
$\mathbf{F_4}$	0.527	0.003	$\mathbf{F_{16}}$	0.527	0.003
$\mathbf{F_5}$	0.510	0.016	$\mathbf{F_{17}}$	0.522	0.003
$\mathbf{F_6}$	0.415	0.017	$\mathbf{F_{18}}$	0.512	0.018
$\mathbf{F_7}$	2.803	0.041	$\mathbf{F_{19}}$	0.381	0.007
$\mathbf{F_8}$	0.620	0.070	$\mathbf{F_{20}}$	0.479	0.005
			$\mathbf{F_{21}}$	0.482	0.007
$F_{2,5}$	-0.388	0.067	$\mathbf{F_{22}}$	2.596	0.040
F _{5,7}	-0.145	0.032	$\mathbf{F_{23}}$	0.457	0.018
$F_{6,8}$	-0.216	0.045			
-, -			$F_{15,18}$	-0.388	0.076
			$F_{18,22}$	-0.144	0.033
			$F_{19,21}$	0.102	0.004
			$F_{21,22}$	0.016	0.026

a) The stretching force constants are given in 10^2 N m⁻¹, the deformation force constants in 10^{-18} N m rad⁻², and the stretching-deformation interaction constants in 10^{-8} N rad⁻¹. The subscript number i in F_i corresponds with that in S_i in Table 1.

Table 7. Comparison of force constants ($10^2 \, \mathrm{N} \, \mathrm{m}^{-1}$), bond distances (nm), and bond angles (°)

	$f(\text{Ge-CH}_3)$	r(Ge-CH ₃)	$\overline{(\mathrm{CH_3-Ge-CH_3})}$
(CH ₃) ₃ GeCN	2.838)	0.1930 ± 0.0006^{15}	114.8±0.1 ¹⁵)
(CH ₃) ₃ GeCl	2.697)	0.1940 ± 0.0003^{16}	112.8 ± 0.5^{16}
(CH ₃) ₃ GeH	2.67a)	0.1947 ± 0.0006^{12}	109.6 ± 0.2^{12}
$(CH_3)_4Ge$	$2.65^{14)}$	0.1945 ± 0.0003^{17}	109.5^{17}

a) Present work.

Potential energy distributions also are given in Tables 2—5. It is clear from these tables that the methyl rocks $(S_{19} \text{ and } S_{20})$ and the GeH or GeD bend (S_{21}) are strongly coupled with each other.

The valence force constant of the Ge-CH₃ bond, derived from the symmetry force constants, is given in Table 7, together with those of the related compounds. The Ge-CH₃ bond distances and CH₃-Ge-CH₃ angles, determined by the microwave and electron diffraction study, are included for each compound in Table 7. The Ge-CH₃ force constant for the present compound is nearly equal to those for (CH₃)₄Ge and (CH₃)₃GeCl and slightly smaller than that for (CH₃)₃GeCN. This is in agreement with what might be expected from the Ge-CH₃ bond distances and CH₃-Ge-CH₃ bond angles.

This work was partly supported by a grant from the Asahi Glass Foundation for Industrial Technology to which our thanks are due. One of the authors (Y. I.) wishes to express his thanks to Prof. Fumio Watari, Iwate University, for the computer programs used in calculations.

References

- 1) Y. Imai and K. Aida, Bull. Chem. Soc. Jpn., **54**, 925 (1981).
- 2) L. M. Sverdlov, M. A. Kovner, and E. P. Krainov, "Vibrational Spectra of Polyatomic Molecules," John Wiley & Sons, New York (1974), p. 562.
- 3) Y. P. Egorov, V. P. Morozov, and N. F. Kovalenko, *Ukr. Khim. Zh.*, **31**, 123 (1965); *Chem. Abstr.*, **63**, 3771b (1965).
- 4) R. Mathis, J. Satge, and F. Mathis, Spectrochim. Acta, 18, 1463 (1962).
- 5) V. A. Ponomarenko, G. Y. Zueva, and N. S. Andreev, *Izv. Akad. Nauk SSSR*, *Otd. Khim. Nauk*, 1758 (1961); *Chem. Abstr.*, **58**, 3904e (1963).
- 6) D. F. Van de Vondel and G. P. Van der Kelen, Bull. Soc. Chim. Belg., 74, 467 (1965).
- 7) J. R. Durig, K. K. Lau, J. B. Turner, and J. Bragin, J. Mol. Spectrosc., 31, 419 (1969).
 - 8) F. Watari, J. Mol. Struct., 32, 285 (1976).
- 9) R. Eujen and H. Bürger, Spectrochim. Acta, Part A, 35, 1135 (1979).
- 10) J. Nakovich, Jr., S. D. Shook, and F. A. Miller, Spectrochim. Acta, Part A, 35, 495 (1979).
- 11) R. D. George, K. M. Mackay, and S. R. Stobart, J. Chem. Soc., A, 3250 (1970).
- 12) J. R. Durig, M. M. Chen, Y. S. Li, and J. B. Turner, J. Phys. Chem., 77, 227 (1973).
- 13) F. Watari, J. Phys. Chem., 84, 448 (1980).
- 14) F. Watari, Spectrochim. Acta, Part A, 34, 1239 (1978).
- 15) J. R. Durig, Y. S. Li, and J. B. Turner, *Inorg. Chem.*, **13**, 1495 (1974).
- 16) J. R. Durig and K. L. Hellams, J. Mol. Struct., 29, 349 (1975).
- 17) J. L. Hencher and F. J. Mustoc, Can. J. Chem., 53, 3542 (1975).